浙江考试/18/

编者按:在"双减"与教育评价改革背景下,表现性评价正成为素养培育落地的重要路径之一。iPRT模型通过"素养目标指标化、项目任务规范化、评价量表分析化、技术工具数字化"四环节,为教师提供了从经验判断转向证据支持的系统方法。本专题结合理论阐释与学科实践,首篇系统解析模型架构,后两篇分别以美术与体育学科为案例,展现iPRT模型在创作思维评价与运动技能观测中的具体应用,为素养导向的评价改革提供可操作的区域范式,推动教师评价能力转型。

应用 iPRT 模型设计表现性评价提升 素养测评能力

狄海鸣

摘要:在"双减"政策深化与新课标落地背景下,非标准化测试学科(如体育、美术)的表现性评价从"辅助工具"向"日常教学评价核心工具"转型,已成为教育评价改革的关键命题之一。以杭州市拱墅区iPRT模型的区域实践为依托,结合体育、美术学科案例及山东省德州市等多地应用经验,系统阐述模型通过"素养目标指标化—项目任务规范化—评价量表分析化—技术工具数字化"四环节,推动教师从"经验型评价"向"研究型评价"转型的路径与成效。研究表明,iPRT模型解决了非标准化测试中"目标模糊、任务泛化、量表主观"的痛点,为"破五唯"背景下的教育评价改革提供了可复制的实践经验。

关键词:素养测评;表现性评价;iPRT模型;教师专业成长

一、研究背景:从主科辅助评价到 非主科核心评价的进阶

(一)前期实践:iPRT模型在主科的验证与推广

早在 2022 年 5 月,杭州市拱墅区教育研究院 开发的 iPRT 模型(指标—项目—量表—技术)已 在小学英语、数学等主科完成首轮实践验证,形成 研究成果并进行推广。选择英语、数学两科的 原因在于:其作为传统主科,长期以纸笔测评 为主,表现性评价仅为辅助手段。英语学科以 "丸子之家"项目式学评为例,通过"自我介绍— 物品摆放一人物识别"任务链,验证了模型在小学低段非纸笔测评中提升语言能力、文化意识的有效性^[1];数学学科以"售票大厅"环节为载体,通过"测量身高一判断票型一计算票价"任务,探索了模型在应用意识培养中的技术路径^[2]。这些实践聚焦"低段期末非纸笔测评的区域推进",解决了早期"游园乐考"目标模糊、信效度不足的问题,同时验证了模型在以下四个方面的价值:通过区域推进,为低段非纸笔测评提供标准化流程;借助校本管理,将素养目标融入校本课程设计,助力学校五育并举的常规化实施;依托"指标一任务一量表一技术"四环节,降低

作者简介: 狄海鸣, 浙江省杭州市拱墅区教育研究院副院长, 高级教师。

基金项目: 2025 年度浙江省教育信息化研究课题"生成式人工智能支持下的项目式学评系统研究与实践"(2025ETB12)

教师设计表现性评价的技术门槛,推动教师在实践过程中提升专业素养;同时,借助可视化数据报告加强家校协同,引导家长参与学生成长,形成育人合力。

该研究成果刊发后,2023年被山东省德州市采纳为试点方案。2024年1月,德州市基于iPRT模型的小学一二年级非纸笔测评现场会,通过"魔镜魔镜告诉我"主题测评,融合语文、数学、科学等7个学科知识,打造"游戏化"测评场景。家长、教师与学生共同参与测评,借助PRT软件实现数据可视化分析,直观呈现学生表现的优秀率、良好率、合格率,推动"评价—分析—改进"闭环,为区域"双减"工作提供了可复制的操作范式^[3]。该模型以"结构化闭环、实操性强、实证支撑充分"等优势,于2024年5月获国家发明专利^[4]。

当前,iPRT模型的应用已从小学阶段向初高中延伸:通过与香港教育局联合推进"根植共建"项目,将模型融入中学 STEM 教育与项目化学习,设计"project i-Farmer"(如工程实践、国民身份认同)和"高阶思维量表"(如批判性思维、成果创新性维度),相关方法论已纳入《项目化学习评价量表的设计与应用》,为中学阶段素养测评提供了实践路径参考^[5]。

(二)现实需求:非标准化测试学科的评价困境与转型契机

随着"双减"政策对"破五唯"的深化要求,体育、美术等非标准化测试学科的评价短板愈发凸显。体育学科中传统评价以"速度、距离、次数"等单一指标为主,难以全面反映学生的运动能力、健康行为、体育品德等素养的发展

程度;美术学科长期"重结果轻过程",过度关注"造型、色彩"等作品效果,往往忽视反映学生创作思维的创作过程、创作态度等隐形的评价内容。

这类学科的评价需从"终结性结果"转向"过程性表现",从"经验判断"转向"数据支撑",而iPRT模型的四环节闭环恰好为其提供了技术支撑。受中高考普遍采用纸笔测评的影响,iPRT模型在主科(如语文、数学)中仍以"非纸笔辅助测评"形式存在,尚未替代标准化纸笔测试的核心地位,但团队正通过PRT-AI数字工具的数据分析能力,探索"技术驱动主科评价从'单一结果'向'过程性素养'转型"的路径,为教育评价改革提供长期探索方向。本项研究即聚焦此类学科,探索模型从"辅助评价"向"日常教学评价核心工具"的进阶应用。

二、iPRT 模型的理论内核与操作逻辑

(一)理论依据:表现性评价与素养达成的内在关联

表现性评价的核心是"通过任务引发学生表现,从表现中观测素养达成度"^[6]。iPRT模型通过"指标一任务一量表一技术"的系统设计,将义务教育课程方案和课程标准中"注重过程性评价""关注核心素养"的要求落地为可操作的技术路径,实现了将"看不见的素养"转化为"可观测的表现"。其逻辑结构既呼应了"目标一任务一量规"的表现性评价设计逻辑,又通过数字技术赋能,解决了传统表现性评价中"数据采集烦琐、分析单一"的痛点。

	(1) 11 (大工间状					
	要素	指标 (indicators)	项目 (Project)	量表 (Rubrics)	技术 (Technology)	
	环节	定性	定规	定量	定型	
	内容	梳理素养目标 拟定测评指标	规范项目活动 明确任务要求	设计评价量规 划分行为表现	管理测评流程 提供数据报告	
	操作要点	逻辑自洽、结构完整、 要素清晰	效标关联、内容对照、 建构效度	关键维度、层次合理、 描述清晰	高效便捷、多元多维、 数据支持	

表 1 iPRT 模型简表

浙江考试/20/

(二)模型结构:四环节支撑素养可视化

iPRT 模型以"指标(indicators) — 项目(Project)—量表(Rubrics)—技术(Technology)"为核心,对应"定性—定规—定量—定型"四环节(如表1)。

定性(素养目标指标化):将抽象的学科核心素养(如体育"运动能力"、美术"艺术表现")转化为可观测的行为指标,需满足逻辑自洽、结构完整、要素清晰的要求。例如,需结合学科课程标准与学校育人目标,明确测评的期望目标及学生关键知识、技能的观测点。

定规(项目任务规范化):设计与素养指标匹配的真实情境任务,需通过"任务情境—测评方法—场地器材"等维度细化要求,保障效标关联(素养目标与评价指标直接对应)、内容对照(学生的真实表现与评价观察的行为点精准匹配)、设计合理性(收集到的学生表现数据能清晰反映素养目标的达成情况)。任务设计需包含考查目标、任务情境、活动流程、设计意图等要素,确保任务与素养目标的强关联。

定量(评价量表分析化): 开发分级描述的分析型量表,包含测评维度和表现水平(不同层次的具体描述)^[5]。量表设计可采用演绎法(教师自上而下设计)或归纳法(基于学生表现自下而上构建),需通过研讨修正语言描述,提升评价的一致性和解析度。

定型(技术工具数字化): 依托 PRT 软件采集数据,实现无纸化、自动化的项目管理与评价分析,生成可视化报告(如优秀率、相关系数分析),为区域、学校、教师、学生及家长提供多元多维的检测分析报告,支撑"评价一分析一改进"闭环。

三、实践路径:体育与美术学科 案例验证

(一)体育学科:从"唯分数"到"综合素养" 的评价转型

以拱墅区"小小特种兵"基本运动技能测评为例, iPRT 模型通过四环节推动评价从"单一指标"

向"综合素养"升级。

1. 定性:素养目标指标化

结合《义务教育体育与健康课程标准(2022年版)》,将"运动能力"素养拆解为"移动性技能(跑、跳)、非移动性技能(平衡、支撑)、操控性技能(投掷、接球)"等可观测指标,并融入学校"健康自省、乐学创享"育人目标,形成"运动认知、动作发展、动作运用、行为品德"四维度目标体系。

2. 定规:项目任务规范化

设计"低姿匍匐+跨越小栏架""翻越跳箱+钻过栏架"等任务,细化"任务情境(军事闯关)、测评方法(计时+动作规范性)、场地器材(小栏架、跳箱)"等八维度要求,确保任务与素养目标的强关联。例如,任务情境贴近学生兴趣,测评方法兼顾动作质量与策略选择,场地器材符合低段学生体能特点。

3. 定量:评价量表分析化

开发"项目评分表"。以"低姿匍匐"任务为例,将动作质量(如"手、腹部、腿、膝、脚着垫")、策略选择(如"无触杆")、行为品德(如"杆子摆放正确")等表现水平分级描述,避免主观判断,提升信度。

4. 定型:技术工具数字化

依托 PRT 软件采集数据,生成"动作质量—策略选择—行为品德"三维度可视化报告。教师可据此调整教学策略,通过"闯关积分"的形式激励学生关注动作细节与团队协作,实现"以评促教"。

(二)美术学科:从"重结果"到"关注过程" 的评价转向

以"为医生叔叔放一朵烟花"项目为例, iPRT 模型推动美术评价从"作品效果"向"创作过程"聚焦。

1. 定性:素养目标指标化

以"艺术表现"素养为核心,从《义务教育艺术课程标准(2022年版)》中提炼"创造与表达、联想和想象、选择与运用"等关键动词,设计"在特定主题下综合运用剪、贴等方法创造图形,并表达创作意图"的评价目标。

2. 定规:项目任务规范化

将大任务拆分为"放烟花(创作)、说意图(评

述)、整理工具(习惯)"三个子任务,设置"为医护人员创作"这一真实情境,增强代入感,确保任务与素养目标的逻辑衔接。例如,"放烟花"任务关注造型能力,"说意图"任务考查创作思维,"整理工具"任务培养学习习惯。

3. 定量:评价量表分析化

开发"造型、评述、习惯"三维度量表,其中"评述维度"通过"图像描述—直接象征—间接象征"的逻辑链设计,引导教师关注学生创作思维的深度(如寓意描述是否清晰呈现"图像—识别—象征"逻辑链)。

4. 定型:技术工具数字化

PRT 系统采集"创作时长、工具整理速度、评述逻辑清晰度"等数据,生成"造型—评述—习惯"关联分析报告。数据显示"低段学生图像象征意义优先于实际造型"(造型与评述维度相关系数大于0.3),教师可据此增加"图像联想"互动环节,提升学生创作思维的深度。

四、素养测评能力的提升:从经验到 研究的转型

在技术快速迭代与新职业形态不断涌现的背景下,技术性技能的生命周期显著缩短,通用的、可迁移的非技术性能力(如创新思维、协作意识、问题解决能力等)成为个体发展的核心素养^[7]。这一趋势冲击着基础教育领域长期以来的"知识本位"教学观念,推动教育目标从知识立意、能力立意向素养立意深化。实现这一进阶,关键在于教师评价理念与能力的转型——从依赖经验的"模糊判断"转向基于证据的"科学研究"。iPRT模型通过标准化流程与工具支撑,为教师提供了从经验型评价向研究型评价跃升的实践路径,具体体现在以下三方面。

(一)素养解构能力:从抽象理念到可观测指标的精准转化

传统评价中,教师常因素养目标抽象、难落地 而陷入困境,如体育教师虽知"运动能力"重要, 却难以明确如何观测;美术教师关注"艺术表现", 却只能笼统地评价作品效果。iPRT 模型的"定性" 环节为这一问题提供了破局方案:基于义务教育课 程方案和课程标准,结合学科核心素养与学校育人 目标,将抽象的素养目标拆解为可观测、可操作的 行为指标,并通过"逻辑自治、结构完整、要素清晰" 三原则检验其合理性。

例如,体育教师将"运动能力"素养细化为"移动性技能(跑、跳)、非移动性技能(平衡、支撑)、操控性技能(投掷、接球)"等具体指标,使"看不见的素养"转化为"可观测的动作表现";美术教师将"艺术表现"素养提炼为"创造与表达、联想和想象、选择与运用"等关键动词,明确"创作思维是否清晰""图像联想是否关联生活"等观测点。这种转化不仅让评价目标更具体,更推动教师从"模糊理解素养"转向"精准把握素养内核"。

(二)质性分析能力:从主观判断到规范 观测的科学升级

传统表现性评价中,教师常因任务设计随意、量表描述模糊导致评价主观化——如美术教师仅凭"作品颜色鲜艳"判断"艺术表现优秀",体育教师仅以"跑步速度快"认定"运动能力达标"。iPRT模型的"定规"与"定量"环节通过双重规范破解这一难题:一方面要求任务设计需与素养指标"效标关联",确保任务能真实引发学生的素养表现;另一方面要求量表开发需"关键维度明确、层次描述清晰",避免主观臆断。

以美术学科"为医生叔叔放烟花"项目为例,教师不再依赖"作品好看与否"的感性判断,而是通过"造型(线条、色彩运用)—评述(图像象征逻辑)—习惯(工具整理速度)"三维度量表,系统记录学生"创作过程中的每一步表现";体育"小小特种兵"测评中,教师从"只看跑步成绩"转向关注"动作规范性(手、腹部是否着垫)""策略选择(是否主动扶栏架)"等细节,通过分级量表(优秀/良好/合格/待提高)客观分析学生的综合素养。这种转变使评价从"经验直觉"走向"科学观测",教师的专业判断能力显著提升。

(三)数据反馈能力:从单一结果到闭环 改进的深度突破

传统评价中,教师常因数据采集烦琐、分析维度单一陷入评价与教学脱节的困境——如美术教师虽知"学生创作思维不足",却无法定位具体问题;体育教师发现"学生团队协作薄弱",却难以验证改进效果。iPRT模型的"定型"环节依托 PRT 软件实现数据采集自动化与分析可视化,推动评价从"结果反馈"转向"闭环改进"。

例如,体育教师通过 PRT 系统生成的"团队合作、规则意识、抢断球能力、传接球能力"四个维度的可视化结果,进一步明确教学目标的达成情况,聚焦教学改进,调整教学策略,设计"闯关积分"活动激励学生关注动作细节与团队协作;美术教师通过"造型一评述一习惯"关联分析报告,发现"低段学生图像象征意义优先于实际造型"

(r>0.3,p<0.01),从而增加"图像联想"互动环节, 针对性提升学生创作思维深度。这种"评价—分析—改进"的良性循环,使教师从"被动执行评价" 转向"主动研究教学",真正实现"以评促教、以评促学"。

五、结论与展望

iPRT 模型不仅是技术工具,更是教师专业成长的"脚手架"。从主科"辅助评价"到非主科"核心评价",从期末测评到日常教学,模型通过标准化流程降低技术门槛,通过学科特色案例推动教师理念更新和能力迭代,为"破五唯"背景下的非标准化测试学科评价改革提供了可复制的路径。未来,我们将进一步完善模型的普适性与灵活性,助力更多学科教师在表现性评价中实现专业跃升,为区域教育评价改革注入新的活力。

参考文献:

- [1] 吴燕. 基于 IPRT 模型的英语项目式学评实践与思考 [J]. 浙江考试,2022(5):19-20.
- [2] 龚之仪 .IPRT 模型在数学非纸笔测评中的实践与思考 [J]. 浙江考试 ,2022(5):16-18.
- [3] 德州市教科院. 德州市基于 IPRT 模型非纸笔测评现场会在禹城举行 [EB/OL].(2024-01-22)[2025-09-10].http://dzedu.dezhou.gov.cn/n909426/c86623755/content.html.
- [4] 狄海鸣, 王自文. 一种基于量表的项目化学习系统: ZL202010887960.X[P].2024-05-10.
- [5] 狄海鸣. 项目化学习评价量表的设计与应用[M]. 北京: 教育科学出版社, 2021:7-12.
- [6] 周文叶, 毛玮洁. 表现性评价: 促进素养养成[J]. 全球教育展望, 2022, 51(5):94-105.
- [7] LIU O L, KELL H, WILLIAMS K, et al. ETS Skills Taxonomy 2025[J]. Chinese/English Journal of Educational Measurement and Evaluation | 教育测量与评估双语期刊: Vol.4: Iss. 4, Article 1.

(编辑:陈何熙娴)